

CECS LABORATORY RISK MANAGEMENT PROCEDURE

Reference number	: VUNI.70
Published date	: 13/04/2024
Effective date	: 13/04/2024
Applicable Department	: CECS Students, faculty, and staff members
Access level	: Internal

Records of changes

Version	Published date	Effective date	Approved by	Description of changes
v1.0	13/04/2024	13/04/2024	Developed by: CECS Labs Reviewed by: Vice Dean of CECS Approved by: Dean of CECS	First release

Table of Contents

1.	Purpos	e	.1
2.	Scope.		.1
3.	Proced	ural Principles	.1
4.	Proced	ural Statements	.1
	4.1. W	hen to carry out risk management	.1
	4.2. W	ho should carry out risk management?	.2
	4.3. Tł	e step-by-step process	.2
	4.3.1.	Step 1 – Identify Risk/Hazard	.2
	4.3.2.	Step 2 – Assess Risk	.4
	4.3.3.	Step 3 – Control The Risks	.6
	4.3.4.	Step 4 – Review Control Measures	.7
5.	Roles a	nd Responsibilities	.8

1. Purpose

Risk assessment is a vital process that CECS will undertake to ensure the safety and well-being of its faculty, staff, students, and customers. It is the process of identifying, evaluating, and prioritizing potential hazards or risks in a workplace or activity. A risk assessment is crucial because it helps organizations understand the level of risk and take appropriate measures to control or eliminate the identified risks.

2. Scope

In the College of Engineering and Computer Science, there are thirteen teaching laboratories. This risk assessment applies to all laboratories.

3. Procedural Principles

Each laboratory personnel must be familiar with the contents that pertain to his or her workplace and the procedures for obtaining additional safety information needed to perform his or her duties safely.

In order to keep the contents of this manual up-to-date with current regulations and best practices, this Risk assessment may periodically be rewritten, with added or deleted sections. Comments and suggestions for improving are welcome and encouraged. Please send comments to:

EE&CS Laboratory Coordinator	ME Laboratory Coordinator
Truong Tuan Vu	Pham Van Kiem
Phone: 0376200891	Phone: 0988379786
E-mail: vu.tt@vinuni.edu.vn	Email: kiem.pv@vinuni.edu.vn

4. Procedural Statements

4.1. When to carry out risk management

Risk management needs to be carried out when:

- Tasks involve risks;
- The legislation requires it;
- Using new equipment or substances;
- There is a change to existing work practices;
- A new risk becomes known;
- An incident has happened;
- There is a change in legislation.

4.2. Who should carry out risk management?

Supervisors maintain responsibility for health and safety hazards in the area(s) under their control. Supervisors can delegate the task of completing the risk management form to other members of staff or PhD students, so long as the person they choose has:

a) completed the health and safety awareness online training course, and

b) demonstrated an understanding of the risk management procedure; and

c) experienced in the particular work area or equipment. Supervisors who have the authority to implement the necessary safety controls in the area where the task or activity is undertaken maintain responsibility for the process and must sign off on the risk management form. All risk management forms must be authorized by the supervisor unless they exist as reference material or as shared resources.

4.3. The step-by-step process

The risk management procedure follows 4 steps:

- Step 1. Identify Risk/Hazard;
- Step 2. Assess Risk;
- Step 3. Control Risk;
- Step 4. Review control measures.

Figure 1: The risk management process

4.3.1. Step 1 – Identify Risk/Hazard

Mark off known risks of the hazardous agents, processes, and equipment (*Figure 2*). Use this list as a tool to help complete the risk assessment in step 2.

Figure 2: The Risks/Hazards list

Ha	zardous Chemicals, Substances, Biohaza	ards
Chemicals/Substances	Acutely toxic chemicals	Biohazards
Compressed Gases - Flammable	<u>Carcinogens</u>	Animal Infection Studies
Compressed Gases - Oxidizing	Nanomaterials	Large Scale Culture
Compressed Gases - Toxic	Reproductive Toxins	Risk Group – 2 Pathogens
Compressed Gases - Inert	Simple Asphyxiant	Risk Group – 3 Pathogens
Cryogenic materials	Corrosive Liquid	Plant Pathogens
Organic peroxides	DEA/Controlled Substances	Biological Toxins
Peroxide Formers	Specific Organ Toxicity	Human, Blood, Body Fluids
Self-reactive substances	Explosives	Cell Culture
Water-reactive substances	Flammable Liquids	Viruses/Recombinant Viral Vecto
<u>Pyrophorics</u>	Oxidizers/reducing agents	Transgenic Plants or Animals
	Hazardous Processes or Equipment	
Explosion hazard	□ Hand/power tools	Unattended Reactions
Exothermic, with potential	Moving Equipment or parts	Respiratory Hazard
for fire or excessive heat	Electrical hazards	Vacuum/Pressure Systems
Acid Baths	Noise > 85 dBa	Refrigerators and Freezers
□ Hazardous reaction or products	□ Hot surfaces	Stirring and Mixing devices
Generation of air contaminants	Ergonomic Hazard	Laboratory Microwave ovens
(e.g. gases, aerosols, particulates)	Needles/Sharps	Slip, trip, falls
Heating chemicals	Drying Oven/Furnace	Repetitive Motion
□ Large volumes	Centrifuge	
Chemical transferring	Working alone/ Afterhours	

Field Hazards							
Foul Weather	Vector-borne or other endemic disease	Lifting/carrying					
Temperature Extremes	Hygiene/water or food-borne	□ Strenuous physical activity (e.g					
Darkness/low light	illness	long days, high stress, etc.)					
Altitude	Falling objects	Driving/Operating a Vehicle					
Smoke/dust	Boating/swimming/water hazards	(e.g. Tractor, OSU or personal)					
Wild Animals/insects	Limited Communication	Uneven Surfaces					
Plants/Allergens	□ Remote area/limited medical services	Heights					
	Shop/Laser/Radiation						
Shop	Laser	Radiation					

Shop	Laser	Radiation
Aerial Lift	Class IIIb Laser	<u>X-ray Machine</u>
Air Compressor	Class IV Laser	Magnetic Field (e.g. NMR, MRI)
Crane		Radioactive Materials
Forklift		Unsealed Source Radionuclides
Hot Work		Sealed Source Radionuclides
Used/New Oil		Ultraviolet Light/Infa-red Light

4.3.2. Step 2 – Assess Risk

Fill out the risk assessment form (*Table 1*) using 5×5 Risk Assessment Matrix tool (*Table 2*) to score your hazard or activity's risk while performing a risk assessment.

	Location/	Tosk/Activity/		Potential	In	itial	Risk		F	inal	Risk	
No.	Location/	Chemical ²	Significant Hazard ³	consequence		Lev	el ⁵	Control Measures⁶		Lev	vel ⁷	Remark ⁸
	Alta	Chemical		of Hazard ⁴	С	L	RPN			L	RPN	
1		EXAMPLE: Using Hydrofluoric acid	Causes severe burns with delayed tissue destruction. Rapidly absorbed through the skin. Causes tissue necrosis and bone destruction. Exposure may not be immediately visible or painful.	Long-term scarring, and hospital stay, could be fatal.	4	4	16	If a substitute is available, this would be the first potential control measure. If not, other measures such as using HF in a fume hood only, proper PPE (double gloves, chemical resistant lab coat, closed-toed shoes, long pants, face shield), proper signage, proper training, do not work alone or after hours and an exposure kit with tums and calcium gluconate.	2	3	6	
2												

Table 1: Risk Assessment Form

A 5×5 risk matrix is a type of risk matrix that is visually represented as a table or a grid. It has 5 categories each for probability (along the X axis) and impact (along the Y axis), all following a scale of low to high. As a comprehensive tool used by organizations during the risk assessment stage of project planning, operations management, or job hazard analysis, a 5×5 risk matrix aims to identify the probability and impact levels of injury and risk exposure to a worker concerning workplace hazards. Further, it can serve as a supplementary tool in evaluating the possible damage or disruption brought about by risks.

For CECS, having a tool to visually represent a risk assessment is paramount to effective operations management. Aside from the purpose of objectively rating risks based on their probability of occurrence and impact levels, a 5×5 risk matrix helps provide an easy-to-follow guide for future risk rating processes whenever a new hazard is identified.

This tool allows Environment, Health, and Safety (EHS) professionals to conduct thorough risk assessments, having 5 rating levels for each component for a more accurate analysis.

			1	-	
	Insignificant 1	Minor 2	Significant 3	Major 4	Severe 5
5 Almost Certain	Medium 5	High 10	Very high 15	Extreme 20	Extreme 25
4 Likely	Medium 4	Medium 8	High 12	Very high 16	Extreme 20
3 Moderate	Low 3	Medium 6	Medium 9	High 12	Very high 1
2 Unlikely	Very low 2	Low 4	Medium 6	Medium 8	High 10
1 Rare	Very low 1	Very low 2	Low 3	Medium 4	Medium 5

Table 2: 5×5 Risk Assessment Matrix

Color-coding is crucial for a 5×5 risk assessment matrix template to represent the combination level of probability and impact of the identified risks. That said, high risks must be in red, moderate risks in yellow (amber), and low risks in green. Organizations, EHS professionals, and project managers can then use other closely related colors, such as orange, light red, and light green, to differentiate the specific risk ratings.

A 5×5 risk matrix also aims to answer the question "What are the 5 risk rating levels in the risk assessment matrix?" A 5×5 risk matrix has two axes, or components to put it simply, that make up the whole table or grid: the Probability and the Impact. Under the two are 5 risk rating levels used to calculate risks.

Probability

Also called likelihood, the Probability (x-axis) pertains to the extent of how likely it is for the risk to occur. The 5 risk rating levels under this component are as follows:

- 1. Rare unlikely to happen and/or have minor or negligible consequences
- 2. Unlikely possible to happen and/or to have moderate consequences
- 3. Moderate likely to happen and/or to have serious consequences
- 4. Likely almost sure to happen and/or to have major consequences
- 5. Almost certain sure to happen and/or have major consequences

Impact

Also called severity or consequences, the Impact (y-axis) aims to determine the level of effects that the hazard can cause to workplace health and safety.

While a 5×5 risk matrix can be tailored to the needs of an organization, the following represent the general terms used to describe the 5 levels to determine the risk's impact:

- 1. Insignificant won't cause serious injuries or illnesses
- 2. Minor can cause injuries or illnesses, only to a mild extent
- 3. **Significant** can cause injuries or illnesses that may require medical attention but limited treatment
- 4. Major can cause irreversible injuries or illnesses that require constant medical attention
- 5. Severe can result in fatality

4.3.3. Step 3 – Control The Risks

Implement control measures and create Standard Operating Procedures (SOP) and training Once a control measure is identified, the project manager will take steps to implement the control measure into their process before beginning the work. A brief standard operating procedure (SOP) should be completed to document what the correct procedures are for the process, equipment, or substance at hand, and should be able to readily review the SOP. Employees should also be trained, with training documented, on the correct procedures.

Figure 2: Hierarchy of Controls

Exhibit 1: NIOSH has developed a hierarchy of controls as a means of determining how to implement feasible and effective control solutions to exposures and hazards. Control methods at the top are potentially more effective and protective than those at the bottom. Following this hierarchy normally leads to the implementation of inherently safer systems, where the risk of illness or injury has been substantially reduced.

4.3.4. Step 4 – Review Control Measures

You must review your risk management procedures:

- When controls are not working effectively (or to review the effectiveness of controls);
- When there is a change in the workplace that can impact on the controls;
- If there is a new hazard identified;
- If consultation with workers or others indicates a review is necessary;
- If a health and safety representative requests a review;
- If new information on a hazard becomes available;

• If there is a change in relevant legislation, standards, codes of practice, agreements, guidelines, or procedures;

• Regularly (this will depend on the level of the risk, more serious risks should be reviewed more regularly). To undertake a review, start at step 1 (identify the hazards) again and continue through the rest of the risk management process. If the risk management form requires a significant update ensure that you re-educate all the previous people who signed off on the original form along with any new people, as necessary.

5. Roles and Responsibilities

a. Dean

The Dean of the college is directly responsible for the safety of all departments and units under his/her authority.

b. Vice Dean

Vice Dean is responsible for overseeing the implementation of the safety procedures and policies within the department.

c. Faculty member, Principle Investigator, or Laboratory Manager

The individual is responsible for the safety of people working in his or her laboratory. The responsibility includes compliance with the procedures specified in the Risk Assessment, establishing laboratory-specific operating procedures and policies, and identifying and managing potential risks.